Exploring inter-trial coherence for inner speech classification in EEG-based brain–computer interface

Author:

Lopez-Bernal DiegoORCID,Balderas David,Ponce Pedro,Molina Arturo

Abstract

Abstract Objective. In recent years, electroencephalogram (EEG)-based brain–computer interfaces (BCIs) applied to inner speech classification have gathered attention for their potential to provide a communication channel for individuals with speech disabilities. However, existing methodologies for this task fall short in achieving acceptable accuracy for real-life implementation. This paper concentrated on exploring the possibility of using inter-trial coherence (ITC) as a feature extraction technique to enhance inner speech classification accuracy in EEG-based BCIs. Approach. To address the objective, this work presents a novel methodology that employs ITC for feature extraction within a complex Morlet time-frequency representation. The study involves a dataset comprising EEG recordings of four different words for ten subjects, with three recording sessions per subject. The extracted features are then classified using k-nearest-neighbors (kNNs) and support vector machine (SVM). Main results. The average classification accuracy achieved using the proposed methodology is 56.08% for kNN and 59.55% for SVM. These results demonstrate comparable or superior performance in comparison to previous works. The exploration of inter-trial phase coherence as a feature extraction technique proves promising for enhancing accuracy in inner speech classification within EEG-based BCIs. Significance. This study contributes to the advancement of EEG-based BCIs for inner speech classification by introducing a feature extraction methodology using ITC. The obtained results, on par or superior to previous works, highlight the potential significance of this approach in improving the accuracy of BCI systems. The exploration of this technique lays the groundwork for further research toward inner speech decoding.

Publisher

IOP Publishing

Reference59 articles.

1. A new eeg acquisition protocol for biometric identification using eye blinking signals;Abo-Zahhad;Int. J. Intell. Syst. Appl.,2015

2. Electroencephalography based imagined alphabets classification using spatial and time-domain features;Agarwal;Int. J. Imaging Syst. Technol.,2022

3. Wavelet transform processor based surface acoustic wave devices;Ali;Energies,2022

4. Imagined speech classification with eeg signals for silent communication: a preliminary investigation into synthetic telepathy;Brigham,2010

5. An examination of the neural unreliability thesis of autism;Butler;Cereb. Cortex,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3