An unsupervised real-time spike sorting system based on optimized OSort

Author:

Wu YingjiangORCID,Li Ben-ZhengORCID,Wang LiyangORCID,Fan ShaocanORCID,Chen Changhao,Li AnanORCID,Lin QinORCID,Wang PankeORCID

Abstract

Abstract Objective. The OSort algorithm, a pivotal unsupervised spike sorting method, has been implemented in dedicated hardware devices for real-time spike sorting. However, due to the inherent complexity of neural recording environments, OSort still grapples with numerous transient cluster occurrences during the practical sorting process. This leads to substantial memory usage, heavy computational load, and complex hardware architectures, especially in noisy recordings and multi-channel systems. Approach. This study introduces an optimized OSort algorithm (opt-OSort) which utilizes correlation coefficient (CC), instead of Euclidean distance as classification criterion. The CC method not only bolsters the robustness of spike classification amidst the diverse and ever-changing conditions of physiological and recording noise environments, but also can finish the entire sorting procedure within a fixed number of cluster slots, thus preventing a large number of transient clusters. Moreover, the opt-OSort incorporates two configurable validation loops to efficiently reject cluster outliers and track recording variations caused by electrode drifting in real-time. Main results. The opt-OSort significantly reduces transient cluster occurrences by two orders of magnitude and decreases memory usage by 2.5–80 times in the number of pre-allocated transient clusters compared with other hardware implementations of OSort. The opt-OSort maintains an accuracy comparable to offline OSort and other commonly-used algorithms, with a sorting time of 0.68 µs as measured by the hardware-implemented system in both simulated datasets and experimental data. The opt-OSort’s ability to handle variations in neural activity caused by electrode drifting is also demonstrated. Significance. These results present a rapid, precise, and robust spike sorting solution suitable for integration into low-power, portable, closed-loop neural control systems and brain–computer interfaces.

Funder

Guangdong Medical University

the Youth Innovative Talent Project from the Department of Education of Guangdong Province

Guangdong Basic Guangdong Basic and Applied Basic Research Foundation

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3