Effective brain connectivity for fNIRS data analysis based on multi-delays symbolic phase transfer entropy

Author:

Wang YalinORCID,Chen Wei

Abstract

Abstract Objective. Recently, effective connectivity (EC) calculation methods for functional near-infrared spectroscopy (fNIRS) data mainly face two problems: the first problem is that noise can seriously affect the EC calculation and even lead to false connectivity; the second problem is that it ignores the various real neurotransmission delays between the brain region, and instead uses a fixed delay coefficient for calculation. Approach. To overcome these two issues, a delay symbolic phase transfer entropy (dSPTE) is proposed by developing traditional transfer entropy (TE) to estimate EC for fNIRS. Firstly, the phase time sequence was obtained from the original sequence by the Hilbert transform and state-space reconstruction was realized using a uniform embedding scheme. Then, a symbolization technique was applied based on a neural-gas algorithm to improve its noise robustness. Finally, the EC was calculated on multiple time delay scales to match different inter-region neurotransmission delays. Main results. A linear AR model, a nonlinear model and a multivariate hybrid model were introduced to simulate the performance of dSPTE, and the results showed that the accuracy of dSPTE was the highest, up to 74.27%, and specificity was 100% which means no false connectivity. The results confirmed that the dSPTE method realized better noise robustness, higher accuracy, and correct identification even if there was a long delay between series. Finally, we applied dSPTE to fNIRS dataset to analyse the EC during the finger-tapping task, the results showed that EC strength of task state significantly increased compared with the resting state. Significance. The proposed dSPTE method is a promising way to measure the EC for fNIRS. It incorporates the phase information TE with a symbolic process for fNIRS analysis for the first time. It has been confirmed to be noise robust and suitable for the complex network with different coupling delays.

Funder

Shanghai Municipal Science and Technology Major Project

National key research and development program of China

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3