Transfer learning of an ensemble of DNNs for SSVEP BCI spellers without user-specific training

Author:

Berke Guney OsmanORCID,Ozkan HuseyinORCID

Abstract

Abstract Objective. Steady-state visually evoked potentials (SSVEPs), measured with electroencephalogram (EEG), yield decent information transfer rates (ITRs) in brain-computer interface (BCI) spellers. However, the current high performing SSVEP BCI spellers in the literature require an initial lengthy and tiring user-specific training for each new user for system adaptation, including data collection with EEG experiments, algorithm training and calibration (all are before the actual use of the system). This impedes the widespread use of BCIs. To ensure practicality, we propose a novel target identification method based on an ensemble of deep neural networks (DNNs), which does not require any sort of user-specific training. Approach. We exploit already-existing literature datasets from participants of previously conducted EEG experiments to train a global target identifier DNN first, which is then fine-tuned to each participant. We transfer this ensemble of fine-tuned DNNs to the new user instance, determine the k most representative DNNs according to the participants’ statistical similarities to the new user, and predict the target character through a weighted combination of the ensemble predictions. Main results. The proposed method significantly outperforms all the state-of-the-art alternatives for all stimulation durations in [0.2–1.0] s on two large-scale benchmark and BETA datasets, and achieves impressive 155.51 bits/min and 114.64 bits/min ITRs. Code is available for reproducibility: https://github.com/osmanberke/Ensemble-of-DNNs. Significance. Our Ensemble-DNN method has the potential to promote the practical widespread deployment of BCI spellers in daily lives as we provide the highest performance while enabling the immediate system use without any user-specific training.

Funder

The Scientific and Technological Research Council of Turkey

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3