Similarity-constrained task-related component analysis for enhancing SSVEP detection

Author:

Sun QiangORCID,Chen Minyou,Zhang LiORCID,Li Changsheng,Kang Wenfa

Abstract

Abstract Objective. Task-related component analysis (TRCA) is a representative subject-specific training algorithm in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces. Task-related components (TRCs), extracted by the TRCA-based spatial filtering from electroencephalogram (EEG) signals through maximizing the reproducibility across trials, may contain some task-related inherent noise that is still trial-reproducible. Approach. To address this problem, this study proposed a similarity-constrained TRCA (scTRCA) algorithm to remove the task-related noise and extract TRCs maximally correlated with SSVEPs for enhancing SSVEP detection. Similarity constraints, which were created by introducing covariance matrices between EEG training data and an artificial SSVEP template, were added to the objective function of TRCA. Therefore, a better spatial filter was obtained by maximizing not only the reproducibility across trials but also the similarity between TRCs and SSVEPs. The proposed scTRCA was compared with TRCA, multi-stimulus TRCA, and sine–cosine reference signal based on two public datasets. Main results. The performance of TRCA in target identification of SSVEPs is improved by introducing similarity constraints. The proposed scTRCA significantly outperformed the other three methods, and the improvement was more significant especially with insufficient training data. Significance. The proposed scTRCA algorithm is promising for enhancing SSVEP detection considering its better performance and robustness against insufficient calibration.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3