Abstract
Abstract
Objective. Multivariate decoding enables access to information encoded in multiple brain activity features with high temporal resolution. However, whether the strength, of which this information is represented in the brain, can be extracted across time within single trials remains largely unexplored. Approach. In this study, we addressed this question by applying a support vector machine (SVM) to extract motor imagery (MI) representations, from electroencephalogram (EEG) data, and by performing time-resolved single-trial analyses of the multivariate decoding. EEG was recorded from a group of healthy participants during MI of opening and closing of the same hand. Main results. Cross-temporal decoding revealed both dynamic and stationary MI-relevant features during the task. Specifically, features representing MI evolved dynamically early in the trial and later stabilized into a stationary network of MI features. Using a hierarchical genetic algorithm for selection of MI-relevant features, we identified primarily contralateral alpha and beta frequency features over the sensorimotor and parieto-occipital cortices as stationary which extended into a bilateral pattern in the later part of the trial. During the stationary encoding of MI, by extracting the SVM prediction scores, we analyzed MI-relevant EEG activity patterns with respect to the temporal dynamics within single trials. We show that the SVM prediction score correlates to the amplitude of univariate MI-relevant features (as documented from an extensive repertoire of previous MI studies) within single trials, strongly suggesting that these are functional variations of MI strength hidden in trial averages. Significance. Our work demonstrates a powerful approach for estimating MI strength continually within single trials, having far-reaching impact for single-trial analyses. In terms of MI neurofeedback for motor rehabilitation, these results set the ground for more refined neurofeedback reflecting the strength of MI that can be provided to patients continually in time.
Funder
Familjen Kamprads Stiftelse
Stiftelsen Promobilia
VINNOVA
Subject
Cellular and Molecular Neuroscience,Biomedical Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献