Decoding lexical tones and vowels in imagined tonal monosyllables using fNIRS signals

Author:

Guo ZengzhiORCID,Chen FeiORCID

Abstract

Abstract Objective. Speech is a common way of communication. Decoding verbal intent could provide a naturalistic communication way for people with severe motor disabilities. Active brain computer interaction (BCI) speller is one of the most commonly used speech BCIs. To reduce the spelling time of Chinese words, identifying vowels and tones that are embedded in imagined Chinese words is essential. Functional near-infrared spectroscopy (fNIRS) has been widely used in BCI because it is portable, non-invasive, safe, low cost, and has a relatively high spatial resolution. Approach. In this study, an active BCI speller based on fNIRS is presented by covertly rehearsing tonal monosyllables with vowels (i.e. /a/, /i/, /o/, and /u/) and four lexical tones in Mandarin Chinese (i.e. tones 1, 2, 3, and 4) for 10 s. Main results. fNIRS results showed significant differences in the right superior temporal gyrus between imagined vowels with tone 2/3/4 and those with tone 1 (i.e. more activations and stronger connections to other brain regions for imagined vowels with tones 2/3/4 than for those with tone 1). Speech-related areas for tone imagery (i.e. the right hemisphere) provided majority of information for identifying tones, while the left hemisphere had advantages in vowel identification. Having decoded both vowels and tones during the post-stimulus 15 s period, the average classification accuracies exceeded 40% and 70% in multiclass (i.e. four classes) and binary settings, respectively. To spell words more quickly, the time window size for decoding was reduced from 15 s to 2.5 s while the classification accuracies were not significantly reduced. Significance. For the first time, this work demonstrated the possibility of discriminating lexical tones and vowels in imagined tonal syllables simultaneously. In addition, the reduced time window for decoding indicated that the spelling time of Chinese words could be significantly reduced in the fNIRS-based BCIs.

Funder

Shenzhen Sustainable Support Program for High-level University

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3