Abstract
Abstract
Objective. Exploring functional connectivity (FC) alterations is important for the understanding of underlying neuronal network alterations in subjective cognitive decline (SCD). The objective of this study was to prove that dynamic FC can better reflect the changes of brain function in individuals with SCD compared to static FC, and further to explore the association between FC alterations and amyloid pathology in the preclinical stage of Alzheimer’s disease. Approach. A total of 101 normal control (NC) subjects, 97 SCDs, and 55 cognitive impairment (CI) subjects constituted the whole-cohort. Of these, 29 NCs and 52 SCDs with amyloid images were selected as the sub-cohort. First, independent components (ICs) were identified by IC analysis and static and dynamic FC were calculated by pairwise correlation coefficient between ICs. Second, FC alterations were identified through group comparison, and seed-based dynamic FC analysis was done. Analysis of variance was used to compare the seed-based dynamic FC maps and measure the group or amyloid effects. Finally, correlation analysis was conducted between the altered dynamic FC and amyloid burden. Main results. The results showed that 42 ICs were revealed. Significantly altered dynamic FC included those between the salience/ventral attention network, the default mode network, and the visual network. Specifically, the thalamus/caudate (IC 25) drove the hub role in the group differences. In the seed-based dynamic FC analysis, the dynamic FC between the thalamus/caudate and the middle temporal/frontal gyrus was observed to be higher in the SCD and CI groups. Moreover, a higher dynamic FC between the thalamus/caudate and visual cortex was observed in the amyloid positive group. Finally, the altered dynamic FC was associated with the amyloid global standardized uptake value ratio (SUVr). Significance. Our findings suggest SCD-related alterations could be more reflected by dynamic FC than static FC, and the alterations are associated with global SUVr.
Funder
Shanghai Municipal Science and Technology Major Project
National Natural Science Foundation of China
111 Project
Subject
Cellular and Molecular Neuroscience,Biomedical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献