Assembling global and local spatial-temporal filters to extract discriminant information of EEG in RSVP task

Author:

Li BowenORCID,Zhang ShangenORCID,Hu Yijun,Lin YanfeiORCID,Gao Xiaorong

Abstract

Abstract Objective. Brain–computer interface (BCI) system has developed rapidly in the past decade. And rapid serial visual presentation (RSVP) is an important BCI paradigm to detect the targets in high-speed image streams. For decoding electroencephalography (EEG) in RSVP task, the ensemble-model methods have better performance than the single-model ones. Approach. This study proposed a method based on ensemble learning to extract discriminant information of EEG. An extreme gradient boosting framework was utilized to sequentially generate the sub models, including one global spatial-temporal filter and a group of local ones. EEG was reshaped into a three-dimensional form by remapping the electrode dimension into a 2D array to learn the spatial-temporal features from real local space. Main results. A benchmark RSVP EEG dataset was utilized to evaluate the performance of the proposed method, where EEG data of 63 subjects were analyzed. Compared with several state-of-the-art methods, the spatial-temporal patterns of proposed method were more consistent with P300, and the proposed method can provide significantly better classification performance. Significance. The ensemble model in this study was end-to-end optimized, which can avoid error accumulation. The sub models optimized by gradient boosting theory can extract discriminant information complementarily and non-redundantly.

Funder

Key-Area Research and Development Program of Guangdong Province

National Natural Science Foundation of China

Strategic Priority Research Program of Chinese Academy of Science

Key Research and Development Program of Ningxia

Beijing Science and Technology Program

National Key Research and Development Program of China

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3