Personalized inference for neurostimulation with meta-learning: a case study of vagus nerve stimulation

Author:

Mao XimengORCID,Chang Yao-ChuanORCID,Zanos Stavros,Lajoie GuillaumeORCID

Abstract

Abstract Objective. Neurostimulation is emerging as treatment for several diseases of the brain and peripheral organs. Due to variability arising from placement of stimulation devices, underlying neuroanatomy and physiological responses to stimulation, it is essential that neurostimulation protocols are personalized to maximize efficacy and safety. Building such personalized protocols would benefit from accumulated information in increasingly large datasets of other individuals’ responses. Approach. To address that need, we propose a meta-learning family of algorithms to conduct few-shot optimization of key fitting parameters of physiological and neural responses in new individuals. While our method is agnostic to neurostimulation setting, here we demonstrate its effectiveness on the problem of physiological modeling of fiber recruitment during vagus nerve stimulation (VNS). Using data from acute VNS experiments, the mapping between amplitudes of stimulus-evoked compound action potentials (eCAPs) and physiological responses, such as heart rate and breathing interval modulation, is inferred. Main results. Using additional synthetic data sets to complement experimental results, we demonstrate that our meta-learning framework is capable of directly modeling the physiology-eCAP relationship for individual subjects with much fewer individually queried data points than standard methods. Significance. Our meta-learning framework is general and can be adapted to many input–response neurostimulation mapping problems. Moreover, this method leverages information from growing data sets of past patients, as a treatment is deployed. It can also be combined with several model types, including regression, Gaussian processes with Bayesian optimization, and beyond.

Funder

United Therapeutics Corporation

Canadian Institute for Advanced Research

Fonds de recherche du Québec

Canada Research Chair in Neural Computations and Interfacing

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3