EEG electrode localization with 3D iPhone scanning using point-cloud electrode selection (PC-ES)

Author:

Everitt AliciaORCID,Richards HaleyORCID,Song YinchenORCID,Smith Joel,Kobylarz ErikORCID,Lukovits TimothyORCID,Halter Ryan,Murphy EthanORCID

Abstract

Abstract Objective. Electroencephalography source imaging (ESI) is a valuable tool in clinical evaluation for epilepsy patients but is underutilized in part due to sensitivity to anatomical modeling errors. Accurate localization of scalp electrodes is instrumental to ESI, but existing localization devices are expensive and not portable. As a result, electrode localization challenges further impede access to ESI, particularly in inpatient and intensive care settings. Approach. To address this challenge, we present a portable and affordable electrode digitization method using the 3D scanning feature in modern iPhone models. This technique combines iPhone scanning with semi-automated image processing using point-cloud electrode selection (PC-ES), a custom MATLAB desktop application. We compare iPhone electrode localization to state-of-the-art photogrammetry technology in a human study with over 6000 electrodes labeled using each method. We also characterize the performance of PC-ES with respect to head location and examine the relative impact of different algorithm parameters. Main Results. The median electrode position variation across reviewers was 1.50 mm for PC-ES scanning and 0.53 mm for photogrammetry, and the average median distance between PC-ES and photogrammetry electrodes was 3.4 mm. These metrics demonstrate comparable performance of iPhone/PC-ES scanning to currently available technology and sufficient accuracy for ESI. Significance. Low cost, portable electrode localization using iPhone scanning removes barriers to ESI in inpatient, outpatient, and remote care settings. While PC-ES has current limitations in user bias and processing time, we anticipate these will improve with software automation techniques as well as future developments in iPhone 3D scanning technology.

Funder

Hitchcock Foundation

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference30 articles.

1. The role of the standard EEG in clinical psychiatry;O’Sullivan;Hum. Psychopharmacol.,2006

2. Traumatic brain injury: an EEG point of view;Ianof;Dement. Neuropsychol.,2017

3. Automated EEG analysis of epilepsy: a review;Acharya;Knowl.-Based Syst.,2013

4. A survey of methods used for source localization using EEG signals;Jatoi;Biomed. Signal Process. Control,2014

5. EEG source imaging;Michel;Clin. Neurophysiol.,2004

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Opportunities and obstacles in non-invasive brain stimulation;Frontiers in Human Neuroscience;2024-03-18

2. Rapid patient-specific FEM meshes from 3D smart-phone based scans;Physiological Measurement;2024-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3