Grading hypoxic-ischemic encephalopathy in neonatal EEG with convolutional neural networks and quadratic time–frequency distributions

Author:

Raurale Sumit AORCID,Boylan Geraldine BORCID,Mathieson Sean R,Marnane William PORCID,Lightbody GordonORCID,O’Toole John MORCID

Abstract

Abstract Objective. To develop an automated system to classify the severity of hypoxic-ischaemic encephalopathy injury (HIE) in neonates from the background electroencephalogram (EEG). Approach. By combining a quadratic time–frequency distribution (TFD) with a convolutional neural network, we develop a system that classifies 4 EEG grades of HIE. The network learns directly from the two-dimensional TFD through 3 independent layers with convolution in the time, frequency, and time–frequency directions. Computationally efficient algorithms make it feasible to transform each 5 min epoch to the time–frequency domain by controlling for oversampling to reduce both computation and computer memory. The system is developed on EEG recordings from 54 neonates. Then the system is validated on a large unseen dataset of 338 h of EEG recordings from 91 neonates obtained across multiple international centres. Main results. The proposed EEG HIE-grading system achieves a leave-one-subject-out testing accuracy of 88.9% and kappa of 0.84 on the development dataset. Accuracy for the large unseen test dataset is 69.5% (95% confidence interval, CI: 65.3%–73.6%) and kappa of 0.54, which is a significant ( P < 0.001 ) improvement over a state-of-the-art feature-based method with an accuracy of 56.8% (95% CI: 51.4%–61.7%) and kappa of 0.39. Performance of the proposed system was unaffected when the number of channels in testing was reduced from 8 to 2—accuracy for the large validation dataset remained at 69.5% (95% CI: 65.5%–74.0%). Significance. The proposed system outperforms the state-of-the-art machine learning algorithms for EEG grade classification on a large multi-centre unseen dataset, indicating the potential to assist clinical decision making for neonates with HIE.

Funder

Wellcome Trust

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3