Monitoring at-home prosthesis control improvements through real-time data logging

Author:

Osborn Luke EORCID,Moran Courtney W,Dodd Lauren D,Sutton Erin EORCID,Norena Acosta Nicolas,Wormley Jared M,Pyles Connor O,Gordge Kelles D,Nordstrom Michelle J,Butkus Josef A,Forsberg Jonathan A,Pasquina Paul F,Fifer Matthew SORCID,Armiger Robert SORCID

Abstract

Abstract Objective. Validating the ability for advanced prostheses to improve function beyond the laboratory remains a critical step in enabling long-term benefits for prosthetic limb users. Approach. A nine week take-home case study was completed with a single participant with upper limb amputation and osseointegration to better understand how an advanced prosthesis is used during daily activities. The participant was already an expert prosthesis user and used the Modular Prosthetic Limb (MPL) at home during the study. The MPL was controlled using wireless electromyography (EMG) pattern recognition-based movement decoding. Clinical assessments were performed before and after the take-home portion of the study. Data was recorded using an onboard data log in order to measure daily prosthesis usage, sensor data, and EMG data. Main results. The participant’s continuous prosthesis usage steadily increased (p= 0.04, max = 5.5 h) over time and over 30% of the total time was spent actively controlling the prosthesis. The duration of prosthesis usage after each pattern recognition training session also increased over time (p = 0.04), resulting in up to 5.4 h of usage before retraining the movement decoding algorithm. Pattern recognition control accuracy improved (1.2% per week, p < 0.001) with a maximum number of ten classes trained at once and the transitions between different degrees of freedom increased as the study progressed, indicating smooth and efficient control of the advanced prosthesis. Variability of decoding accuracy also decreased with prosthesis usage (p < 0.001) and 30% of the time was spent performing a prosthesis movement. During clinical evaluations, Box and Blocks and the Assessment of the Capacity for Myoelectric Control scores increased by 43% and 6.2%, respectively, demonstrating prosthesis functionality and the NASA Task Load Index scores decreased, on average, by 25% across assessments, indicating reduced cognitive workload while using the MPL, over the nine week study. Significance. In this case study, we demonstrate that an onboard system to monitor prosthesis usage enables better understanding of how prostheses are incorporated into daily life. That knowledge can support the long-term goal of completely restoring independence and quality of life to individuals living with upper limb amputation.

Funder

Johns Hopkins University Applied Physics Laboratory

Uniformed Services University of the Health Sciences

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3