Improved online decomposition of non-stationary electromyogram via signal enhancement using a neuron resonance model: a simulation study

Author:

Zheng YangORCID,Xu GuanghuaORCID,Li Yixin,Qiang Wei

Abstract

Abstract Objective. Motor unit (MU) discharge information obtained via the online electromyogram (EMG) decomposition has shown promising prospects in multiple applications. However, the nonstationarity of EMG signals caused by the rotation (recruitment-derecruitment) of MUs and the variation of MU action potentials (MUAP) can significantly degrade the online decomposition performance. This study aimed to develop an independent component analysis-based online decomposition method that can accommodate the nonstationarity of EMG signals. Approach. The EMG nonstationarity can make the separation vectors obtained beforehand inaccurate, resulting in the reduced amplitudes of the peaks corresponding to firing events in the source signal (independent component) and then the decreased accuracy of firing events. Therefore, we utilized the FitzHugh–Nagumo (FHN) resonance model to enhance the firing peaks in the source signal in order to improve the decomposition accuracy. A two-session approach was used with the offline session to extract the separation vectors and train the FHN models. In the online session, the source signal was estimated and further processed using the FHN model before detecting the firing events in a real-time manner. The proposed method was tested on simulated EMG signals, in which MU rotation and MUAP variation were involved to mimic the nonstationarity of EMG recordings. Main results. Compared with the conventional method, the proposed method can improve the decomposition accuracy significantly (88.70% ± 4.17% vs. 92.43% ± 2.79%) by enhancing the firing peaks, and more importantly, the improvement was more prominent when the EMG signal had stronger background noises (87.00% ± 3.70% vs. 91.66% ± 2.63%). Conclusions. Our results demonstrated the effectiveness of the proposed method to utilize the FHN model to improve the online decomposition performance on the nonstationary EMG signals. Further development of our method has the potential to improve the performance of the neural decoding system that utilizes the MU discharge information and promote its application in the neural-machine interface.

Funder

Fundamental Research Funds for the Central Universities of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3