Decomposition strategy for surface EMG with few channels: a simulation study

Author:

Wu WenhaoORCID,Jiang Li,Yang BangchuORCID

Abstract

Abstract Objective. In the specific use of electromyogram (EMG) driven prosthetics, the user’s disability reduces the space available for the electrode array. We propose a framework for EMG decomposition adapted to the condition of a few channels (less than 30 observations), which can elevate the potential of prosthetics in terms of cost and applicability. Approach. The new framework contains a peel-off approach, a refining strategy for motor unit (MU) spike train and MU action potential and a re-subtracting strategy to adapt the framework to few channels environments. Simulated EMG signals were generated to test the framework. In addition, we quantify and analyze the effect of strategies used in the framework. Main results. The results show that the new algorithm has an average improvement of 19.97% in the number of MUs identified compared to the control algorithm. Quantitative analysis of the usage strategies shows that the re-subtracting and refining strategies can effectively improve the performance of the framework under the condition of few channels. Significance. These prove that the new framework can be applied to few channel conditions, providing a optimization space for neural interface design in cost and user adaptation.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Reference42 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of Fingertip Force Based on the Muscle Characteristics Using Element Description Method;2024 IEEE 33rd International Symposium on Industrial Electronics (ISIE);2024-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3