A novel channel selection scheme for olfactory EEG signal classification on Riemannian manifolds

Author:

Zhang Xiao-NeiORCID,Meng Qing-Hao,Zeng MingORCID

Abstract

Abstract Objective. The classification of olfactory-induced electroencephalogram (olfactory EEG) signals has potential applications in disease diagnosis, emotion regulation, multimedia, and so on. To achieve high-precision classification, numerous EEG channels are usually used, but this also brings problems such as information redundancy, overfitting and high computational load. Consequently, channel selection is necessary to find and use the most effective channels. Approach. In this study, we proposed a multi-strategy fusion binary harmony search (MFBHS) algorithm and combined it with the Riemannian geometry classification framework to select the optimal channel sets for olfactory EEG signal classification. MFBHS was designed by simultaneously integrating three strategies into the binary harmony search algorithm, including an opposition-based learning strategy for generating high-quality initial population, an adaptive parameter strategy for improving search capability, and a bitwise operation strategy for maintaining population diversity. It performed channel selection directly on the covariance matrix of EEG signals, and used the number of selected channels and the classification accuracy computed by a Riemannian classifier to evaluate the newly generated subset of channels. Main results. With five different classification protocols designed based on two public olfactory EEG datasets, the performance of MFBHS was evaluated and compared with some state-of-the-art algorithms. Experimental results reveal that our method can minimize the number of channels while achieving high classification accuracy compatible with using all the channels. In addition, cross-subject generalization tests of MFBHS channel selection show that subject-independent channels obtained through training can be directly used on untrained subjects without greatly compromising classification accuracy. Significance. The proposed MFBHS algorithm is a practical technique for effective use of EEG channels in olfactory recognition.

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3