A convolutional neural network to identify motor units from high-density surface electromyography signals in real time

Author:

Wen YueORCID,Avrillon SimonORCID,Hernandez-Pavon Julio CORCID,Kim Sangjoon JORCID,Hug FrançoisORCID,Pons José LORCID

Abstract

Abstract Objectives. This paper aims to investigate the feasibility and the validity of applying deep convolutional neural networks (CNN) to identify motor unit (MU) spike trains and estimate the neural drive to muscles from high-density electromyography (HD-EMG) signals in real time. Two distinct deep CNNs are compared with the convolution kernel compensation (CKC) algorithm using simulated and experimentally recorded signals. The effects of window size and step size of the input HD-EMG signals are also investigated. Approach. The MU spike trains were first identified with the CKC algorithm. The HD-EMG signals and spike trains were used to train the deep CNN. Then, the deep CNN decomposed the HD-EMG signals into MU discharge times in real time. Two CNN approaches are compared with the CKC: (a) multiple single-output deep CNN (SO-DCNN) with one MU decomposed per network, and (b) one multiple-output deep CNN (MO-DCNN) to decompose all MUs (up to 23) with one network. Main results. The MO-DCNN outperformed the SO-DCNN in terms of training time (3.2–21.4 s epoch−1 vs 6.5–47.8 s epoch−1, respectively) and prediction time (0.04 vs 0.27 s sample−1, respectively). The optimal window size and step size for MO-DCNN were 120 and 20 data points, respectively. It results in sensitivity of 98% and 85% with simulated and experimentally recorded HD-EMG signals, respectively. There is a high cross-correlation coefficient between the neural drive estimated with CKC and that estimated with MO-DCNN (range of r-value across conditions: 0.88–0.95). Significance. We demonstrate the feasibility and the validity of using deep CNN to accurately identify MU activity from HD-EMG with a latency lower than 80 ms, which falls within the lower bound of the human electromechanical delay. This method opens many opportunities for using the neural drive to interface humans with assistive devices.

Funder

Shirley Ryan Abilitylab

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3