Decoupling representation learning for imbalanced electroencephalography classification in rapid serial visual presentation task

Author:

Li FuORCID,Li Hongxin,Li YangORCID,Wu Hao,Fu Boxun,Ji YoushuoORCID,Wang Chong,Shi Guangming

Abstract

Abstract Objective. The class imbalance problem considerably restricts the performance of electroencephalography (EEG) classification in the rapid serial visual presentation (RSVP) task. Existing solutions typically employ re-balancing strategies (e.g. re-weighting and re-sampling) to alleviate the impact of class imbalance, which enhances the classifier learning of deep networks but unexpectedly damages the representative ability of the learned deep features as original distributions become distorted. Approach. In this study, a novel decoupling representation learning (DRL) model, has been proposed that separates the representation learning and classification processes to capture the discriminative feature of imbalanced RSVP EEG data while classifying it accurately. The representation learning process is responsible for learning universal patterns for the classification of all samples, while the classifier determines a better bounding for the target and non-target classes. Specifically, the representation learning process adopts a dual-branch architecture, which minimizes the contrastive loss to regularize the representation space. In addition, to learn more discriminative information from RSVP EEG data, a novel multi-granular information based extractor is designed to extract spatial-temporal information. Considering the class re-balancing strategies can significantly promote classifier learning, the classifier was trained with re-balanced EEG data while freezing the parameters of the representation learning process. Main results. To evaluate the proposed method, experiments were conducted on two public datasets and one self-conducted dataset. The results demonstrate that the proposed DRL can achieve state-of-the-art performance for EEG classification in the RSVP task. Significance. This is the first study to focus on the class imbalance problem and propose a generic solution in the RSVP task. Furthermore, multi-granular data was explored to extract more complementary spatial-temporal information. The code is open-source and available at https://github.com/Tammie-Li/DRL.

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3