EEG-based classification of imagined digits using a recurrent neural network

Author:

Mahapatra Nrushingh CharanORCID,Bhuyan Prachet

Abstract

Abstract Objective. In recent years, imagined speech brain–computer (machine) interface applications have been an important field of study that can improve the lives of patients with speech problems through alternative verbal communication. This study aims to classify the imagined speech of numerical digits from electroencephalography (EEG) signals by exploiting the past and future temporal characteristics of the signal using several deep learning models. Approach. This study proposes a methodological combination of EEG signal processing techniques and deep learning models for the recognition of imagined speech signals. EEG signals were filtered and preprocessed using the discrete wavelet transform to remove artifacts and retrieve feature information. To classify the preprocessed imagined speech neural signals, multiple versions of multilayer bidirectional recurrent neural networks were used. Main results. The method is examined by leveraging MUSE and EPOC signals from MNIST imagined digits in the MindBigData open-access database. The presented methodology’s classification performance accuracy was noteworthy, with the model’s multiclass overall classification accuracy reaching a maximum of 96.18% on MUSE signals and 71.60% on EPOC signals. Significance. This study shows that the proposed signal preprocessing approach and the stacked bidirectional recurrent network model are suitable for extracting the high temporal resolution of EEG signals in order to classify imagined digits, indicating the unique neural identity of each imagined digit class that distinguishes it from the others.

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unsupervised heterogeneous domain adaptation for EEG classification;Journal of Neural Engineering;2024-07-16

2. Single-Channel EEG Classification of Human Attention with Two-Branch Multiscale CNN and Transformer Model;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. Analysing Digits with Sequential Convolutional Neural Networks and Adam Optimizer;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

4. Exploring Numerical Analysis with Sequential Convolutional Neural Networks Leveraging Adam Optimization Technique;2024 International Conference on Innovations and Challenges in Emerging Technologies (ICICET);2024-06-07

5. Deep learning vs. conventional techniques for processing and classifying EEG brain disorders: A survey;2024 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA);2024-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3