Abstract
Abstract
Context. Large multi-site neuroimaging datasets have significantly advanced our quest to understand brain-behavior relationships and to develop biomarkers of psychiatric and neurodegenerative disorders. Yet, such data collections come at a cost, as the inevitable differences across samples may lead to biased or erroneous conclusions. Objective. We aim to validate the estimation of individual brain network dynamics fingerprints and appraise sources of variability in large resting-state functional magnetic resonance imaging (rs-fMRI) datasets by providing a novel point of view based on data-driven dynamical models. Approach. Previous work has investigated this critical issue in terms of effects on static measures, such as functional connectivity and brain parcellations. Here, we utilize dynamical models (hidden Markov models—HMM) to examine how diverse scanning factors in multi-site fMRI recordings affect our ability to infer the brain’s spatiotemporal wandering between large-scale networks of activity. Specifically, we leverage a stable HMM trained on the Human Connectome Project (homogeneous) dataset, which we then apply to an heterogeneous dataset of traveling subjects scanned under a multitude of conditions. Main Results. Building upon this premise, we first replicate previous work on the emergence of non-random sequences of brain states. We next highlight how these time-varying brain activity patterns are robust subject-specific fingerprints. Finally, we suggest these fingerprints may be used to assess which scanning factors induce high variability in the data. Significance. These results demonstrate that we can (i) use large scale dataset to train models that can be then used to interrogate subject-specific data, (ii) recover the unique trajectories of brain activity changes in each individual, but also (iii) urge caution as our ability to infer such patterns is affected by how, where and when we do so.
Funder
Exploratory Research for Advanced Technology
Army Research Office
Japan Agency for Medical Research and Development
National Science Foundation
Subject
Cellular and Molecular Neuroscience,Biomedical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献