Tradeoffs in US dairy manure greenhouse gas emissions, productivity, climate, and manure management strategies

Author:

Niles Meredith TORCID,Wiltshire SergeORCID

Abstract

Abstract The United States is the largest supplier of dairy products globally, making it an important focus for environmental, economic, and societal outcomes. Increasingly greenhouse gases (GHGs) have become an area of focus for the industry, as industry groups have set their own goals to improve environmental impacts. A significant portion of dairy GHG emissions come from manure management, which can vary considerably by farm and region. Here we explore how the adoption and use of six common manure management strategies (MMS) have changed over a recent 12-year period, and how this relates to milk production, climate, and manure GHGs. Using data from the United States Department of Agriculture, the Environmental Protection Agency, and the National Oceanic and Atmospheric Administration across all fifty states, we find that overall US dairy manure management GHG emission intensity (CO2e per kg of milk produced) has increased 18% between 2003 and 2014, which is associated with an increase in adoption of liquid and anaerobic MMS. However, we also find that these systems are positively associated with higher productivity: nationally, total milk production grew by 21.0%, while the cow herd inventory grew by just 1.9%, an increase of 18.7% in per-cow milk production over the study period. We find clear regional adoption of certain kinds of MMS, which relate in many cases to temperature and rainfall. We discuss why these shifts may have occurred as a result of economic and policy drivers, including the shift towards these MMS for compliance with new water quality policies in the past decade, highlighting the tradeoffs that exist in on-farm decision-making. We provide some potential strategies to reduce GHG emissions in these systems while simultaneously considering water quality and other potential tradeoffs. We suggest that transitioning to some of these strategies requires additional research to better understand farmer decision-making as it relates to MMS, a currently understudied topic.

Publisher

IOP Publishing

Subject

Atmospheric Science,Earth-Surface Processes,Geology,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3