Abstract
Abstract
There is growing interest in sub-seasonal to seasonal predictions of Arctic sea ice due to its potential effects on midlatitude weather and climate extremes. Current prediction systems are largely dependent on physics-based climate models. While climate models can provide good forecasts for Arctic sea ice at different timescales, they are susceptible to initial states and high computational costs. Here we present a purely data-driven deep learning model, UNet-F/M, to predict monthly sea ice concentration (SIC) one month ahead. We train the model using monthly satellite-observed SIC for the melting and freezing seasons, respectively. Results show that UNet-F/M has a good predictive skill of Arctic SIC at monthly time scales, generally outperforming several recently proposed deep learning models, particularly for September sea-ice minimum. Our study offers a perspective on sub-seasonal prediction of future Arctic sea ice and may have implications for forecasting weather and climate in northern midlatitudes.
Funder
National Natural Science Foundation of China
Subject
Atmospheric Science,Earth-Surface Processes,Geology,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Food Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献