Fire, water, and biodiversity in the Sierra Nevada: a possible triple win

Author:

Stephens Scott LORCID,Thompson Sally,Boisramé Gabrielle,Collins Brandon M,Ponisio Lauren C,Rakhmatulina Ekaterina,Steel Zachary L,Stevens Jens TORCID,van Wagtendonk Jan W,Wilkin Kate

Abstract

Abstract Reducing the risk of large, severe wildfires while also increasing the security of mountain water supplies and enhancing biodiversity are urgent priorities in western US forests. After a century of fire suppression, Yosemite and Sequoia-Kings Canyon National Parks located in California’s Sierra Nevada initiated programs to manage wildfires and these areas present a rare opportunity to study the effects of restored fire regimes. Forest cover decreased during the managed wildfire period and meadow and shrubland cover increased, especially in Yosemite’s Illilouette Creek basin that experienced a 20% reduction in forest area. These areas now support greater pyrodiversity and consequently greater landscape and species diversity. Soil moisture increased and drought-induced tree mortality decreased, especially in Illilouette where wildfires have been allowed to burn more freely resulting in a 30% increase in summer soil moisture. Modeling suggests that the ecohydrological co-benefits of restoring fire regimes are robust to the projected climatic warming. Support will be needed from the highest levels of government and the public to maintain existing programs and expand them to other forested areas.

Funder

Joint Fire Science Program

UC ANR Competitive Grants Program

National Science Foundation Critical Zone Collaborative Network

Publisher

IOP Publishing

Subject

Atmospheric Science,Earth-Surface Processes,Geology,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Food Science

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3