AO-SVM: a machine learning model for predicting water quality in the cauvery river

Author:

J Vellingiri,K KalaivananORCID,Shanmugaiah KalirajORCID,Shobana Bai Femilda Josephin Joseph

Abstract

Abstract Water pollution is a significant cause of death globally, resulting in 1.8 million deaths annually due to waterborne diseases. Assessing water quality is a complex process that involves identifying contaminants in water sources and determining whether it is safe for human consumption. In this study, we utilized the Cauvery River dataset to develop a model for evaluating water quality. The aim of our research was to proficiently perform feature selection and classification tasks. We introduced a novel technique called the Aquila Optimization Support Vector Machine (AO-SVM), an advanced and effective machine learning system for predicting water quality. Here SVM is used for the classification, and the Aquila algorithm is used for optimizing SVM. The results show that the proposed method achieved a maximum accuracy rate of 96.3%, an execution time of 0.75 s, a precision of 93.9%, a recall rate of 95.1%, and an F1-Score value of 94.7%. The suggested AO-SVM model outperformed all other existing classification models regarding classification accuracy and other parameters.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3