Amplification factors for extreme sea level frequency have problematic features as a metric of coastal hazard

Author:

Hall Timothy MORCID

Abstract

Abstract The future projected frequency of a specified baseline extreme sea level (ESL), often called the amplification factor (AF), is extensively used as a metric of evolving coastal flood hazard with sea level rise (SLR). The baseline ESL is typically analyzed using extreme value analysis, and the SLR is added to the resulting distribution. In the presence of SLR uncertainty, it is natural to analyze AFs probabilistically. I derive probability density functions (PDFs) of AF, given uncertainty distributions of SLR. If the ESL distribution is modeled as Gumbel and the SLR distribution as normal, then the AF distribution is log normal. However, in active tropical cyclone regions, ESL often has a longer tail than Gumbel, and a Frechet (Type-II) Generalized Extreme Value (GEV) is more appropriate. In this case, I show that the AF distribution has a divergent mean, preventing its use as a hazard metric. In addition, I show that for Frechet ESL, the AF cannot even be defined for SLR above a threshold β / ξ f 0 ξ , where f 0 is the specified baseline frequency (e.g., f 0 = 0.01 yr−1 for the 100-year exceedance), β is the GEV scale parameter and ξ the shape parameter. This SLR threshold can be as low as 0.5 m in the southeast US and Caribbean, within reach mid to late century. Above the threshold, ESL at all frequencies exceeds the baseline reference frequency, preventing the calculation of AF. The resulting probabilistic distribution of AF is insensitive to SLR above the threshold. These features detrimentally impact the utility of AF as a hazard metric. Frechet distributions are appropriate and commonly used for ESL in tropical cyclone regions, but AFs applied to such distributions must interpreted with caution. In such regions, coastal risk managers should consider other flood hazard metrics, such as probabilistic estimates of flood depth.

Publisher

IOP Publishing

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3