Management of eutrophication using combined the ‘flock & sink’ mitigation technique and submerged plants restoration: a mesocosm study

Author:

Liu YutianORCID,Liu Jinfu,Chen Yuwei,Dai TaotaoORCID,Li Wei,Xu Jinying,Zhang Xiaoliang,Tang Linsen,Zheng Fangwen,Zhong Jiayou

Abstract

Abstract Currently, the issue of eutrophication and cyanobacterial blooms persists in water bodies worldwide, prompting the exploration of various treatment methods. This study conducted a comparative analysis of eutrophic water bodies using ferric chloride-modified zeolite (FMZ) and calcium hydroxide-modified zeolite (CMZ) combined with Elodea nuttallii (E. nuttallii) for removal and purification effects. The results revealed that the addition of E. nuttallii had a sustained inhibitory effect on phosphorus release, maintaining stability with lower Turbidity(Tur) and stabilized pH within the range of 8.5–9. FMZ demonstrated rapid reduction in dissolved phosphorus concentration, achieving a removal rate of 96% within 3 days. The combined plant group of CMZ and FMZ exhibited synergistic effects with E. nuttallii, achieving an impressive total phosphorus (TP) removal rate of 80.13% and a total nitrogen (TN) removal rate of 48.77%. Additionally, chlorophyll a (Chl a) concentration decreased from 100.74 ± 24.72 μg l−1 to 49.96 ± 2.08 μg l−1. The phytoplankton community composition indicated that diatoms thrived in low temperatures and high NH4 conditions. Under the same low Total Nitrogen to Total Phosphorus (TN:TP) ratio, high TP concentrations were associated with cyanobacteria dominance, while green algae dominated in other scenarios. This comprehensive approach demonstrates the potential efficacy of CMZ and FMZ combined with E. nuttallii in addressing eutrophic water bodies and mitigating cyanobacterial blooms.

Funder

the Science and Technology Project of Jiangxi Provincial Department of Education

the science and Technology Project of China Railway Water Conservancy & Hydropower Planning and Design Group Co., Ltd

the Science and Technology Project of Jiangxi Provincial Department of Water Resources

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3