Effects of irrigation and fertilization on the emission factors and emission intensities of nitrous oxide in alkaline soil

Author:

Wenzhu YangORCID,Yongqin Jia,Youlin Hu,Jie Yang,Peng Gu,Yan Jiao

Abstract

Abstract Environmental damage attributed to nitrous oxide (N2O) emissions have received widespread attention. Agricultural sources release substantial amounts of N2O into the atmosphere. However, comparative studies on the effects of different irrigation and fertilization methods, namely, drip fertigation (a combination of fertilizing and irrigation), sprinkler fertigation, and traditional furrow irrigation with chemical fertilizer spraying, on N2O emissions in alkaline soil have been limited. Therefore, three-year in situ field observations were conducted to investigate the effect of these three irrigation and fertilization modes on N2O emissions using the static chamber method over the period 2015–2017. There are significant seasonal variations in soil N2O emission fluxes among alkaline soils under different fertilization and irrigation modes, with emissions peaking in July and August, but no significant difference in yearly variations. The N2O emission intensity of drip fertigation soil was 0.20 kg N t−1 year−1, of sprinkler fertigation soil was 0.38 kg N t−1 year−1, respectively, while of furrow irrigation was 0.91 kg N t−1 year−1, respectively. Moisture and temperature of soil were key factors driving the observed nitrous oxide variations. Compared with traditional furrow irrigation, drip and sprinkler fertigation significantly increased potato yield and decreased N2O emissions in alkaline soil, thus satisfying both yield and environmental protection.

Funder

National Natural Science Foundation of China

The Science Foundation for Distinguished Young Scholars of Inner Mongolia Autonomous Region, China

The Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region, China

Key research and development and achievement transformation plan of Inner Mongolia Autonomous Region

The Fundamental Research Funds for the Inner Mongolia Normal University

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3