Can we use a machine learning approach to predict the impact of heatwaves on emergency department attendance?

Author:

Jian LeORCID,Patel Dimpalben,Xiao Jianguo,Jansz Janis,Yun Grace,Lin Ting,Robertson Andrew

Abstract

Abstract Global warming has contributed to more frequent and severe extreme weather events, which has led to increased research on the health impacts of extreme heat. However, research on heatwaves, air quality, and their spatial impact on health service demand is limited. This study used machine learning (ML) approaches to obtain the optimised model to predict health service demand associated with those risk factors for an all-age model and compared it with young children (0–4 years) model in Perth. Ten years’ data (2006–2015) on emergency department attendances (EDA), socioeconomic status (SES), heatwaves, landscape fires, and gaseous and particulate air pollutants were collected. ML approaches, including decision tree, random forest (RF), and geographical random forest (GRF) models, were used to compare and select the best model for predicting EDA and identify important risk factors. Five-hundred cross validations were performed using the testing data, and a construct validation was performed by comparing actual and predicted EDA data. The results showed that the RF model outperformed other models, and SES, air quality, and heatwaves were among the important risk factors to predict EDA. The GRF model was fitted well to the data (R2 = 0.975) and further showed that heatwaves had significant geographic variations and a joint effect with PM2.5 in the southern suburbs of the study area for young children. The RF and GRF models have satisfactory performance in predicting the impact of heatwaves, air quality, and SES on EDA. Heatwaves and air quality have great spatial heterogeneity. Spatial interactions between heatwaves, SES, and air quality measures were the most important predictive risk factors of EDA for young children in the Perth southern suburbs. Future studies are warranted to confirm the findings from this study on a wider scale.

Funder

Telethon-Perth Children’s Hospital Research Fund

Publisher

IOP Publishing

Subject

Atmospheric Science,Earth-Surface Processes,Geology,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Food Science

Reference72 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3