Seems fishy: environmental DNA impacts on sketa22 quality control in salmonidae dominated waterbodies using qPCR and ddPCR

Author:

Hart John JORCID,Tardani Renee A,Ruetz Carl RORCID,Rediske Richard R

Abstract

Abstract Globally, water resources used for recreation and drinking water are threatened by fecal pollution. These pollutants can cause gastrointestinal illness and environmental degradation. Additionally, most sources of fecal pollution are non-point sources stemming from multiple species. Identifying these sources is vital to categorizing the exposure risk from contact and improving remediation efforts. A common technique to provide species-specific information for fecal source identification is microbial source tracking (MST). MST quantifies DNA of host or host-associated microorganisms through polymerase chain reaction (PCR) technologies such as quantitative PCR (qPCR) or droplet digital PCR (ddPCR). MST techniques have been implemented globally and are used for routine monitoring. In the United States (US), the US Environmental Protection Agency has provided several approved standard PCR methods for MST and other recreational water quality applications. These methods have specified quality controls including sample processing controls (SPC) and assessments for sample inhibition. A standard SPC used in EPA methods involves spiking samples with salmon testes DNA (nominally originating from Chum Salmon, Oncorhynchus keta and quantifying them using Sketa22, a genus specific TaqManTM assay). This quality control (QC) behaves similarly to the microbial species being monitored. MST testing in Fall 2022 indicated elevated Sketa22 recoveries and re-analysis of samples indicated the detection of external Salmonidae DNA on both qPCR and ddPCR platforms. Our research was designed to identify the cause of this interference. Results indicate that the primer probe set may react with wild Salmonidae DNA. Analyzing the Sketa22 sequence using BLAST indicated matches with many species of Salmonidae present in the sampled stream system. Consequently, further research is required to identify the effectiveness of Sketa22 as a QC when native and migratory Salmonidae are present. General recommendations are provided to account for excess ambient Salmonidae DNA.

Funder

Grand Valley State University

West Michigan Air and Waste Management Association

Publisher

IOP Publishing

Subject

Atmospheric Science,Earth-Surface Processes,Geology,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3