Cannabis and residential groundwater pumping impacts on streamflow and ecosystems in Northern California

Author:

Zipper Samuel CORCID,Carah Jennifer K,Dillis Christopher,Gleeson TomORCID,Kerr Ben,Rohde Melissa M,Howard Jeanette K,Zimmerman Julie K H

Abstract

Abstract Cannabis is an emerging agricultural frontier, but due to its quasi-legal status its environmental impacts are poorly understood. Where cannabis is irrigated by groundwater, pumping can lead to streamflow depletion in surrounding streams which may impair other water users or aquatic ecosystems. Here, we investigate the impacts of groundwater pumping for cannabis irrigation at the scale of the watershed, the individual well, and the stream segment, and contextualize by comparing with residential groundwater use. Combining mapped cannabis cultivation and residential structure locations with grower reports of irrigation water sources, we develop distributed estimates of groundwater pumping and associated streamflow depletion caused by cannabis and residential users within the Navarro River Watershed in Northern California (USA). An estimated 73% of cannabis cultivation sites and 92% of residential structures in the watershed rely on groundwater, and groundwater abstraction leads to streamflow depletion during late summer when groundwater is a critical source of baseflow to ecologically important streams. However, streamflow depletion caused by cannabis cultivation is dwarfed by the impacts of residential use, which causes >5 times as much streamflow depletion and is concentrated close to ecologically important stream segments. Focusing on cannabis, a small number of wells (<25%) cause a disproportionate amount of depletion (>50%), and significant predictors for impacts of a well are the annual pumping rate, the distance to the closest stream, and the transmissivity between the well and the stream. Streamflow depletion increases nonlinearly when pumping occurs within 1.2 km of streams, and most cannabis and residential groundwater use is within this critical distance. Given the rapid increase in cannabis cultivation, these results indicate that potential streamflow depletion from groundwater irrigation of cannabis is a current and future concern, and will be superimposed on top of significant depletion already occurring due to residential use in the region studied.

Funder

Natural Sciences and Engineering Research Council of Canada

S. D. Bechtel, Jr. Foundation and Stephen Bechtel Fund

Angela Nomellini

Ken Olivier

Publisher

IOP Publishing

Reference58 articles.

1. Predicting the potential for historical coho, chinook and steelhead habitat in northern California;Agrawal,2005

2. High time to assess the environmental impacts of Cannabis Cultivation;Ashworth;Environ. Sci. Technol.,2017

3. Capture versus capture zones: clarifying terminology related to sources of Water to Wells;Barlow;Groundwater,2018

4. Impacts of surface water diversions for marijuana cultivation on aquatic habitat in four northwestern california watersheds;Bauer;PLoS One,2015

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3