Inferring the linkage of sea surface height anomalies, surface wind stress and sea surface temperature with the falling ice radiative effects using satellite data and global climate models

Author:

Li Jui-Lin FORCID,Tsai Yu-Cian,Xu Kuan-Man,Lee Wei-LiangORCID,Jiang Jonathan HORCID,Yu Jia-Yuh,Fetzer Eric J,Stephens Graeme

Abstract

AbstractThis study attempts to infer the linkage of sea surface height anomaly (SSHA), surface wind stress and sea surface temperature with the falling ice (snow) radiative effects (FIREs) over the tropical and subtropical Pacific Ocean using CESM1-CAM5 sensitivity experiments with FIREs-off (NOS) and on (SON) under CMIP5 historical run. The obs4MIPs monthly SSH data based upon satellite measurements are used as a reference. The seasonal and annual mean spatial patterns of SSHA difference between NOS and SON are tightly linked to those of SST and TAU over the study domain, in particular, over the south Pacific. Compared with NOS, SON simulates improved seasonal and annual mean SSHA associated with improved sea surface temperature (SST), surface wind stress (TAU) over the trade-wind areas. In SON, the simulated mean absolute bias of SSHA over the study domain is reduced (up to 30%) against NOS relative to observations. The SSHA biases are then compared with CMIP5 models. Despite the biases of SST and SSHA over the south and north flanks of the equator in SON, the seasonal variations of improved SSHA are closely related to those of TAU and SST resulting from the FIREs; that is, higher SSHA is associated with weaker TAU and warmer SST changes and vice versa. The CMIP5 ensemble mean absolute biases of SSHA show similarities to NOS mainly over the south Pacific.

Publisher

IOP Publishing

Subject

Atmospheric Science,Earth-Surface Processes,Geology,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Food Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3