Quantification of the interannual variability of the nationwide electric power supply from photovoltaic systems in Japan

Author:

Watanabe TakeshiORCID,Oka KazutakaORCID,Hijioka YasuakiORCID

Abstract

Abstract Information on the variation in photovoltaic (PV) power generation is essential for resource assessment. This work investigated the interannual variability of the nationwide electric power supply from PV systems in Japan. Objectives of this study were twofold: one was the quantification of the annual variability of the nationwide PV power supply. The other was identifying the causes of the variability. However, the time span of available observation data on the PV power supply is inadequate to evaluate its variability, as PV systems have been rapidly installed in recent years. We used simulation to bypass this limitation. Due to the lack of available information for modeling, a hybrid modeling approach, combining a parametric model, and estimating parameters by fitting the model to observations, was employed. Nationwide PV power supply simulations were performed using historical weather data for 30 years, from 1991–2020. The long-term simulation data enabled us to quantify the interannual variability of the nationwide PV power generation. The annual variability measured with the range from the minimum to the maximum was approximately 9% of the mean. The variability for each month was less than 30% of the monthly mean for every month except for July when it was approximately 40%. An increasing trend in the annual mean PV power supply was observed over the 30 years, with an increase of 0.16% per year of the mean over the whole period. We found that the variations in sea surface temperature (SST) in the Tropics are factors contributing to the variability of nationwide PV power supply. Specifically, the variation in SST in the tropical Indian Ocean is one of the possible driving factors of the annual variability. The framework proposed in this study can provide valuable information for assessing solar energy resources on an interannual scale.

Publisher

IOP Publishing

Subject

Atmospheric Science,Earth-Surface Processes,Geology,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3