Estimation of river discharge using Monte Carlo simulations and a 1D hydraulic model based on the artificial multi-segmented rating curves at the confluence of two rivers

Author:

Kang HansolORCID,Kim YeonsuORCID,An HyunukORCID,Byun Jisun,Noh Joonwoo

Abstract

Abstract During extreme floods caused by climate change, reliable flow discharge data are essential for successful reservoir operation to mitigate downstream flood damage. Generally, the flow discharge is computed using the rating curve (RC) established from the relationship between the flow rate and water stage level. Determining the parameters of rating curves is subject to uncertainties related to the difficulties and limitations of flow monitoring in covering a wide range of flow variations. Especially at river confluences, the uncertainties are pronounced when floods occur owing to several factors such as roughness change, backwaters, and levee overflow. The Seomjin River Basin in Korea suffered from flood inundation that occurred at the tributary confluence during an extreme flood in 2020. To identify a reliable flow rate of the main stream and tributary, this study proposes an indirect flow assessment scheme using a 1D hydrodynamic simulation model to find the best simulated water level in an iterative manner based on Monte Carlo (MC) simulations. With a large amount of discharge data generated from random-number combinations, it is possible to obtain the best results automatically by specifying the reliability limitation considering the uncertainty of the predetermined RC parameters associated with the roughness coefficient. Nash Sutcliffe Efficiency (NSE) was incorporated to evaluate the reproduced water level to meet the threshold specified for NSE ≥ 0.75. The simulated flowrates computed from the revised RC and roughness coefficients revealed an error range of 8%–36.6% compared with the design flood. The approach proposed in this study is applicable for determining the valid parameters necessary to create a revised RC at an existing water level gauge station, where the uncertainties of the RC are pronounced, particularly in the vicinity of the channel confluence.

Funder

Korea Environmental Industry and Technology Institute

Publisher

IOP Publishing

Reference25 articles.

1. Toward monitoring short-term droughts using a novel daily scale;Li;Journal of Hydrometeorology,2020

2. Climate change impacts on catchment-scale extreme rainfall variability: case study of rize province;Danandeh Mehr;Turkey Journal of Hydrologic Engineering,2017

3. Analysis of stage-discharge relations for open-channel flows and their associated uncertainties;Schmidt,2002

4. A hydraulic study on the applicability of flood rating curves;Di Baldassarre;Hydrol. Res.,2011

5. Considering rating curve uncertainty in water level predictions;Sikorska;Hydrol. Earth Syst. Sci.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3