Lime movement through highly weathered soil profiles

Author:

Nunes Márcio RORCID,Denardin José E,Vaz Carlos M P,Karlen Douglas L,Cambardella Cynthia A

Abstract

Abstract Applying lime is a fundamental practice for abating acidity in highly weathered soil, but better management strategies for no-till systems are needed to prevent surface pH elevation with little to no subsurface effects. This study was conducted to quantify chemical changes within the soil profile in response to lime and straw applications under both greenhouse and field conditions. Four controlled environment experiments (soil columns) and one field study were conducted on soils classified as Rhodic Hapludox and Rhodic Eutrodox. The soil column experiments evaluated four lime rates (0, 3.9, 7.8, or 15.6 Mg ha−1) and four straw rates (0, 4, 12 and 16 Mg ha−1) either individually or in combination. Lime treatments were surface applied or incorporated in the top 5-cm, while straw treatments were incorporated in the top 5-cm. In the field, lime rates of 0, 8.3 and 33.2 Mg ha−1 were incorporated into the 0 to 10-cm depth in both a soybean [Glycine max] monoculture and diversified cropping system with white oat (Avena sativa), soybean, black oats (Avena strigosa), corn (Zea mays) and wheat (Triticum aestivum). Both field and soil columns studies showed minimal lime movement into the soil profile with chemical changes being limited to 2.5-cm below where it was applied or incorporated regardless of cropping system. Surface application of high lime rates promoted chemical stratification resulting in dramatic increases in topsoil pH and exchangeable Ca and Mg levels with minimal mitigation of subsurface soil acidity. Other studies also suggest that lime movement into the soil profile can vary depending on the experimental condition. Therefore, additional investigations across a wider geographic area, greater range of weather and climatic conditions, methods and rates of lime application need to be conducted to improve lime recommendation for high weathered soil managed using no-till practices.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

IOP Publishing

Subject

Atmospheric Science,Earth-Surface Processes,Geology,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3