Utilizing MODIS remote sensing and integrated data for forest fire spread modeling in the southwest region of Canada

Author:

Dastour HatefORCID,Hassan Quazi KORCID

Abstract

Abstract Accurate prediction of fire spread is considered crucial for facilitating effective fire management, enabling proactive planning, and efficient allocation of resources. This study places its focus on wildfires in two regions of Alberta, Fort McMurray and Slave Lake, in Southwest Canada. For the simulation of wildfire spread, an adapted fire propagation model was employed, incorporating MODIS datasets such as land surface temperature, land cover, land use, and integrated climate data. The pixels were classified as burned or unburned in relation to the 2011 Slave Lake wildfire and the initial 16 days of the 2016 Fort McMurray wildfire, utilizing defined starting points and the aforementioned specified datasets. The simulation for the 2011 Slave Lake wildfire achieved an weighted average precision, recall, and f1-scores of 0.989, 0.986, and 0.987, respectively. Additionally, macro-averaged scores across these three phases were 0.735, 0.829, and 0.774 for precision, recall, and F1-scores, respectively. The simulation of the 2016 Fort McMurray wildfire introduced a phased analysis, dividing the initial 16 days into three distinct periods. This approach led to average precision, recall, and f1-scores of 0.958, 0.933, and 0.942 across these phases. Additionally, macro-averaged scores across these three phases were 0.681, 0.772, and 0.710 for precision, recall, and F1-scores, respectively. The strategy of segmenting simulations into phases may enhance adaptability to dynamic factors like weather conditions and firefighting strategies.

Funder

Natural Sciences and Engineering Research Council of Canada; and Alberta Innovates

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3