Sediment biogeochemistry and relationship with arsenic in the Kuitun River Basin, Xinjiang, China: influences of microbial community structure and characteristics on arsenic migration

Author:

Yang Jingru,Li Qiao,Tao Hongfei,Jiang Youwei,Zhang Yanjiao,Aihemaiti Mahemujiang,Yang WenXin

Abstract

Abstract The microorganisms in sediments play a significant role in Arsenic (As) migration in groundwater systems. However, the impact mechanisms of microbial community structure on As release and enrichment are not completely clear. In this study, the community structure and characteristics of microorganisms in sediments of the Kuitun River Basin were first investigated through field investigation, high-throughput sequencing, and microbial analysis. The obtained results showed that Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes were the dominant phyla in the sediments, accounting for 30.23%–87.87%, 3.280%–65.22%, 1.71%–14.37%, and 0.46%–16.67%, respectively. Whereas, Arthrobacter, Acinetobacter, Pseudomonas, and Hydrogenophaga were the main genera in the collected sediments from the Kuitun River Basin, accounting for 1.81%–60.13%, 0.70%–77.24%, 0.21%–35.5%, and 0.38%–26.27%, respectively. Arthrobacter can increase the As contents in the sediments. In contrast, Acinetobacter can both inhibit and promote the release of As from the sediments, while Pseudomonas and Hydrogenophaga can only inhibit the release of As from the sediments. The Variance Inflation Factor (VIF) suggested that Ca, Mg, Mn, Cu, and As were highly correlated with each other. The distance-based redundancy analysis (Db-RDA) analysis demonstrated significant influences of the sediment chemical properties on the microbial activity and community structure in the sediments, according to the following order: Ca > Cu > Mn > Mg > As. Ca2+ and Mn2+ in the environment can influence the growth and metabolism of microorganisms, thus affecting the redox environment and As release from sediments. This study confirmed the interaction that may exist between microorganisms and As. Moreover, this study not only confirmed the interaction between microorganisms and As, but also provided a comprehensive understanding of the effects of the microbial community on the chemical cycle of the groundwater system in the Kuitun River basin. The analysis of the influences of the microbial community on sediment As provided further insights into As release from sediments and As enrichment in groundwater in the study area.

Funder

Youth Science Foundation of Natural Science Foundation of Xinjiang Uygur Autonomous Region

National Natural Science Foundation of China

Basic Research Funds of Universities in Xinjiang Autonomous Region

Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention

Publisher

IOP Publishing

Subject

Atmospheric Science,Earth-Surface Processes,Geology,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3