Insights to the water balance of a Boreal watershed using a SWAT model

Author:

Islam KamalORCID,Daraio JosephORCID,Sabau GabrielaORCID,Cheema MumtazORCID,Galagedara LakshmanORCID

Abstract

Abstract The hydrological characteristics of a watershed play a crucial role in shaping ecosystems within the Boreal zone and have a significant impact on regional environments. Knowing these characteristics, such as the distinctive topography, vegetation, soil composition, and climatic conditions in the Canadian Boreal ecozone, is essential for implementing sustainable water management. This study focuses on assessing the hydrological dynamics of the Upper Humber River Watershed (UHRW) in western Newfoundland, Canada, using the Soil and Water Assessment Tool (SWAT) model. The UHRW includes sub-basins and hydrological response units (HRUs), with diverse land uses, soil types, and slope characteristics. Key parameters influencing streamflow simulation were identified through sensitivity analysis, including the runoff curve number, the effective hydraulic conductivity, the temperature lapse rate, the soil evaporation compensation factor, and the available water capacity of the soil layer. The SWAT model, using data from the Reidville hydrometric station, shows favorable performance metrics, with R2 values of 0.79 and 0.83 during the calibration and evaluation periods, respectively. The model effectively captures seasonal and monthly flow patterns, displaying right-skewed distributions and seasonal variations. The analyzed hydrological parameters, such as precipitation, evaporation, transpiration, surface runoff, and groundwater flow, reveal their significant contributions to the water balance. The flow duration curve analysis indicates the model’s capability to estimate peak and low flows, with slight under-prediction during the recession phase. Seasonal analysis further supports the model’s performance, with positive Nash-Sutcliffe Efficiency (NSE) values ranging from 0.65 to 0.91. The study concludes that the SWAT model is suitable for simulating the hydrological processes in the studied watershed providing valuable insights for sustainable water resource management and decision-making in the UHRW. The results can be useful for other Boreal ecozone watersheds.

Funder

Memorial University of Newfoundland

Publisher

IOP Publishing

Reference103 articles.

1. Assessment of climate change impacts on streamflow through hydrological model using SWAT model: a case study of Afghanistan;Aawar;Model. Earth Syst. Environ.,2020

2. User manual for SWAT-CUP, SWAT calibration and uncertainty analysis programs;Abbaspour,2007

3. SWAT-CUP: SWAT calibration and uncertainty programs—a user manual;Abbaspour,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3