Feasibility of sequential anaerobic-aerobic integrated settler-based biofilm reactor for onsite treatment of domestic wastewater

Author:

Singh Surya PratapORCID,Sharma Meena KumariORCID,Sarangi Shailesh KumarORCID,Pandey ShatrudhanORCID,Deifalla Ahmed FaroukORCID,Hasnain S M MozammilORCID

Abstract

Abstract The present study investigates the applicability of sequential anaerobic aerobic integrated settler-based biofilm reactor (SAABR) for the onsite treatment of domestic wastewater. The main aim of the study is to overcome the inherent flaws in an anaerobic system as well as enhancing the effluent quality by means of aerobic post-treatment. The sequential system consisted of an anaerobic settler is followed by two biofilters, anaerobic as well aerobic in series. The first biofilter is anaerobic and the second one is aerobic. The system was run on two hydraulic loading conditions (steady and non-steady flow) with a 24-hour hydraulic retention time (HRT) for the anaerobic system and a 2-hour HRT of aerobic filters. It was found that the performance of the system at steady flow stood at 93.9 ± 2.6, 93.3 ± 1.8, 91.2 ± 4.2, 75.8 ± 3.8 and 98.7 ± 1.1% in terms of total suspended solids (TSS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN) and faecal coliform (FC), respectively while at non-steady flow, it decreased slightly. The Field Emission Scanning Electron Microscope (FESEM) showed the presence of anaerobic bacteria in the system. The system is able to overcome the major flaws of the anaerobic systems and able to deliver high effluent quality. The study demonstrated that the sequential system can be a sustainable alternative for the onsite treatment of domestic wastewater, particularly in rural areas of the developing countries like India.

Funder

Department of Science and Technology, Government of Rajasthan, India

Publisher

IOP Publishing

Subject

Atmospheric Science,Earth-Surface Processes,Geology,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3