Abstract
Abstract
In recent decades, the rate of milk production per unit land area and per cow has increased with the intensification of the dairy system. The possible environmental risks arising from nutrients surpluses, such as nitrogen (N), are often evaluated using the N balance approach. In Hokkaido, the biggest dairy farming area in Japan, many dairy farms have started introducing a new dairy farming system called the total mixed ration (TMR) and biogas system. Feed and manure are managed at a community scale in these systems while each farm focuses primarily on milking cows. Thus, calculating the N balance for this system is complicated. Therefore, this study aimed to evaluate the N surplus and use efficiency (NUE), focusing mainly on the community-based dairy farming system, as described above. We investigated twenty dairy farms comprising a TMR centre (TMR-based farms) and nineteen conventional dairy farms (conventional farms). The Hokkaido dairy farms had a smaller N surplus and higher NUE than farms in other countries. The whole farm N surplus and NUE ranged from −163 to 701 kg N ha−1 and from 20% to 171% with median values of 40.5 kg N ha−1 and 69.5%, respectively. One of the possible reasons for the smaller N surplus and higher NUE is a lower stocking rate (averaged 1.3 cows ha−1) on Hokkaido dairy farms. There were strong relationships between feed N and N surplus because the studied dairy farms depended on purchased feed. In the comparison between the TMR centre and conventional dairy farms, the milk production level per cow and stocking rate tended to increase, and variations between farms decreased on the TMR-based farms. Increasing the amount of home-grown feed with pasture management is essential to decreasing N surplus for the new dairy farming systems.
Subject
Atmospheric Science,Earth-Surface Processes,Geology,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Food Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献