Optimisation-based refinement of genesis indices for tropical cyclones

Author:

Ascenso GuidoORCID,Cavicchia LeoneORCID,Scoccimarro EnricoORCID,Castelletti AndreaORCID

Abstract

Abstract Tropical cyclone genesis indices are valuable tools for studying the relationship between large-scale environmental fields and the genesis of tropical cyclones, supporting the identification of future trends of cyclone genesis. However, their formulation is generally derived from simple statistical models (e.g., multiple linear regression) and are not optimised globally. In this paper, we present a simple framework for optimising genesis indexes given a user-specified trade-off between two performance metrics, which measure how well an index captures the spatial and interannual variability of tropical cyclone genesis. We apply the proposed framework to the popular Emanuel and Nolan Genesis Potential Index, yielding new, optimised formulas that correspond to different trade-offs between spatial and interannual variability. Result show that our refined indexes can improve the performance of the Emanuel and Nolan index up to 8% for spatial variability and 16%–22% for interannual variability; this improvement was found to be statistically significant (p < 0.01). Lastly, by analysing the formulas found, we give some insights into the role of the different inputs of the index in maximising one metric or the other.

Funder

Climate Intelligence

Publisher

IOP Publishing

Subject

Atmospheric Science,Earth-Surface Processes,Geology,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3