Abstract
Abstract
The low-lying and populous Vietnamese Mekong delta is rapidly losing elevation due to accelerating subsidence rates, primarily caused by increasing groundwater extraction. This strongly increases the delta’s vulnerability to flooding, salinization, coastal erosion and, ultimately, threatens its nearly 18 million inhabitants with permanent inundation. We present projections of extraction-induced subsidence and consequent delta elevation loss for this century following six mitigation and non-mitigation extraction scenarios using a 3D hydrogeological model with a coupled geotechnical module. Our results reveal the long-term physically response of the aquifer system following different groundwater extraction pathways and show the potential of the hydrogeological system to recover. When groundwater extraction is allowed to increase continuously, as it did over the past decades, extraction-induced subsidence has the potential to drown the Mekong delta single-handedly before the end of the century. Our quantifications also disclose the mitigation potential to reduce subsidence by limiting groundwater exploitation and hereby limiting future elevation loss. However, the window to mitigate is rapidly closing as large parts of the lowly elevated delta plain may already fall below sea level in the coming decades. Failure to mitigate groundwater extraction-induced subsidence may result in mass displacement of millions of people and could severely affect regional food security as the food producing capacity of the delta may collapse.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献