Machine learning models to predict nitrate concentration in a river basin

Author:

Dorado-Guerra Diana YaritzaORCID,Corzo-Pérez GeraldORCID,Paredes-Arquiola JavierORCID,Pérez-Martín Miguel ÁngelORCID

Abstract

Abstract Aquifer-stream interactions affect the water quality in Mediterranean areas; therefore, the coupling of surface water and groundwater models is generally used to solve water-planning and pollution problems in river basins. However, their use is limited because model inputs and outputs are not spatially and temporally linked, and the data update and fitting are laborious tasks. Machine learning models have shown great potential in water quality simulation, as they can identify the statistical relationship between input and output data without the explicit requirement of knowing the physical processes. This allows the ecological, hydrological, and environmental variables that influence water quality to be analysed with a holistic approach. In this research, feature selection (FS) methods and algorithms of artificial intelligence—random forest (RF) and eXtreme Gradient Boosting (XGBoost) trees—are used to simulate nitrate concentration and determine the main drivers related to nitrate pollution in Mediterranean streams. The developed models included 19 inputs and sampling of nitrate concentration in 159 surface water quality-gauging stations as explanatory variables. The models were trained on 70 percent data, with 30 percent used to validate the predictions. Results showed that the combination of FS method with local knowledge about the dataset is the best option to improve the model’s performance, while RF and XGBoost simulate the nitrate concentration with high performance (r = 0.93 and r = 0.92, respectively). The final ranking, based on the relative importance of the variables in the RF and XGBoost models, showed that, regarding nitrogen and phosphorus concentration, the location explained 87 percent of the nitrate variability. RF and XGBoost predicted nitrate concentration in surface water with high accuracy without using conditions or parameters of entry and enabled the observation of different relationships between drivers. Thus, it is possible to identify and delimit zones with a spatial risk of pollution and approaches to implementing solutions.

Funder

Instituto Colombiano de Crédito Educativo y Estudios Técnicos en el Exterior

Spanish Research Agency

Publisher

IOP Publishing

Subject

Atmospheric Science,Earth-Surface Processes,Geology,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3