Human and climatic influences on wildfires ignited by recreational activities in national forests in Washington, Oregon, and California *

Author:

Jenkins Jeffrey SORCID,Abatzoglou John TORCID,Rupp David EORCID,Fleishman EricaORCID

Abstract

Abstract In Washington, Oregon, and California, ignitions from recreational activities accounted for 12% of human-caused wildfires, and 8% of the area burned, from 1992–2020. Wildfires ignited by recreational activities not only increase fire suppression expenditures but have the potential to limit recreational activities traditionally associated with use of fire, such as camping. From 1992–2020, 50% of recreation-caused ignitions in these three states occurred on lands managed by the U.S. Forest Service. The mean annual number of recreation-caused ignitions on national forests in the three states during this period was relatively stable, about 500, whereas recreation-caused ignitions within other jurisdictions decreased by 40%. Improved understanding of the impact of human and climatic factors on recreation-caused ignitions could provide valuable insights for shaping policy and management decisions. We found that mean annual densities of recreation-caused ignitions on national forests were 7 times greater within 1 km of designated campgrounds than >1 km from campgrounds, although 80% of recreation-caused ignitions occured >1 km from designated campgrounds. Ignition density in campgrounds increased non-linearly with overnight visitor density; a doubling of visitor density was associated with a ∼40% increase in ignitions. Large (≥4 ha) recreation-caused wildfires, especially those ignited in designated campgrounds, tended to occur concurrent with drought and 1–2 years after anomalously wet conditions. These results suggest that accounting for drought in implementation of fire restrictions, and targeting wildfire-prevention awareness to recreational users outside designated campgrounds, might reduce the likelihood of recreation-caused ignitions.

Funder

Joint Fire Science Program

Publisher

IOP Publishing

Subject

Atmospheric Science,Earth-Surface Processes,Geology,Agricultural and Biological Sciences (miscellaneous),General Environmental Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3