Roadmap for unconventional computing with nanotechnology

Author:

Finocchio GiovanniORCID,Incorvia Jean Anne CORCID,Friedman Joseph SORCID,Yang Qu,Giordano Anna,Grollier JulieORCID,Yang HyunsooORCID,Ciubotaru FlorinORCID,Chumak Andrii VORCID,Naeemi Azad JORCID,Cotofana Sorin DORCID,Tomasello RiccardoORCID,Panagopoulos ChristosORCID,Carpentieri MarioORCID,Lin PengORCID,Pan GangORCID,Yang J JoshuaORCID,Todri-Sanial AidaORCID,Boschetto GabrieleORCID,Makasheva KremenaORCID,Sangwan Vinod K,Trivedi Amit Ranjan,Hersam Mark CORCID,Camsari Kerem YORCID,McMahon Peter LORCID,Datta Supriyo,Koiller Belita,Aguilar Gabriel HORCID,Temporão Guilherme PORCID,Rodrigues Davi RORCID,Sunada Satoshi,Everschor-Sitte KarinORCID,Tatsumura KosukeORCID,Goto HayatoORCID,Puliafito VitoORCID,Åkerman JohanORCID,Takesue HirokiORCID,Ventra Massimiliano DiORCID,Pershin Yuriy VORCID,Mukhopadhyay Saibal,Roy Kaushik,Ting Wang I-ORCID,Kang WangORCID,Zhu Yao,Kaushik Brajesh KumarORCID,Hasler JenniferORCID,Ganguly SamiranORCID,Ghosh Avik W,Levy William,Roychowdhury VwaniORCID,Bandyopadhyay SupriyoORCID

Abstract

Abstract In the ‘Beyond Moore’s Law’ era, with increasing edge intelligence, domain-specific computing embracing unconventional approaches will become increasingly prevalent. At the same time, adopting a variety of nanotechnologies will offer benefits in energy cost, computational speed, reduced footprint, cyber resilience, and processing power. The time is ripe for a roadmap for unconventional computing with nanotechnologies to guide future research, and this collection aims to fill that need. The authors provide a comprehensive roadmap for neuromorphic computing using electron spins, memristive devices, two-dimensional nanomaterials, nanomagnets, and various dynamical systems. They also address other paradigms such as Ising machines, Bayesian inference engines, probabilistic computing with p-bits, processing in memory, quantum memories and algorithms, computing with skyrmions and spin waves, and brain-inspired computing for incremental learning and problem-solving in severely resource-constrained environments. These approaches have advantages over traditional Boolean computing based on von Neumann architecture. As the computational requirements for artificial intelligence grow 50 times faster than Moore’s Law for electronics, more unconventional approaches to computing and signal processing will appear on the horizon, and this roadmap will help identify future needs and challenges. In a very fertile field, experts in the field aim to present some of the dominant and most promising technologies for unconventional computing that will be around for some time to come. Within a holistic approach, the goal is to provide pathways for solidifying the field and guiding future impactful discoveries.

Funder

U.S. DOE National Nuclear Security Administration

Honeywell International Inc.

Department of Energy

United States Government

Laboratory Directed Research and Development

Threadwork Program

ANR

Program at Sandia National Laboratories

Samsung

N. A

Sandia LLC

Office of Naval Research

JST

INCT-IQ

German Research Foundation

PRESTO

Young Investigator Program

Carl-Zeiss-Stiftung

JSPS

Science and Engineering Research Council of A*STAR

National Science Foundation

BENDIS

FAPERJ

M.C.H.

Swedish Research Council

FAPESP

André Saraiva

ERC

Research and Innovation Programme

Research and Development Program of Zhejiang Province in China

European Research Council

CHIRON

Italian Ministry

PRIN

Natural Science Foundation of China

European Union

KAKENHI

A*STAR

SpOT-LITE Programme

Singapore Competitive Research Programme

National Research Foundation

Agence Nationale de la Recherche in France

EU

National Research Foundation (NRF) Singapore

National University of Singapore Advanced Research and Technology Innovation Centre

University R&D Programme

Samsung Electronics

Publisher

IOP Publishing

Reference175 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3