Abstract
AbstractIn this work, proton exchange membranes based on polybenzimidazole (PBI) with incorporation of acidic Fe3O4@SiO2@RF (resorcinol–formaldehyde)–SO3H nanoparticles are produced. The effects of the core@double-shell nanoparticles on the fuel cell performance of the PBI membrane are examined. The obtained results demonstrate that the proton conductivity of the PBI-Fe3O4@SiO2@RF–SO3H nanocomposite membranes increases. The interactions of Fe3O4@SiO2@RF–SO3H nanoparticles in the PBI matrix (which contains phosphoric acid) have strong effects on proton conductivity. The best proton conductivity of 170 mS cm−1is obtained in the nanocomposite membrane at 180 °C. The potential for the use of these nanocomposite membranes with improved fuel cell performance in high-temperature applications is confirmed.
Subject
Electrical and Electronic Engineering,General Materials Science,Biomedical Engineering,Atomic and Molecular Physics, and Optics,General Chemistry,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献