A perspective on musical representations of folded protein nanostructures

Author:

Franjou Sebastian L,Milazzo MarioORCID,Yu Chi-HuaORCID,Buehler Markus JORCID

Abstract

Abstract Proteins are the building blocks of all life, creating materials as diverse as spider silk, cells, and hair, but also other countless functions from enzymes to drugs. Here we discuss a method to represent folded protein nanostructures as musical compositions. We explore different avenues of artistic creation, interpolating between human design, natural or evolutionary design, and designs from a deep recurrent network model that was trained against musical scores of known three-dimensional protein structures. Artistically, our work offers a new perspective on the limits of scientific understanding, and allows human players to interact with nanoscale phenomena, providing a tool for STEM outreach, and use of nanoscopic phenomena for artistic expression.

Funder

ONR

NIH

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,General Materials Science,Biomedical Engineering,Atomic and Molecular Physics, and Optics,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3