Study of the tribological properties of nano lubricating oil blends for diesel engines

Author:

Kuang XinORCID,Yin Bifeng,Yang Xiping,Jia Hekun,Xu Bo

Abstract

Abstract The aim of this paper is to evaluate and compare the tribological properties of lubricating oil blends with added nano graphene and nano cerium oxide (CeO2) on the key friction pairs of diesel engines. Dispersion stability is the premise of the study of tribological properties. In this paper, nano CeO2 particles were self-made and high-quality nano graphene was purchased. The dispersion stability of the two nanomaterials in lubricating oil was studied after the same modification. According to the working conditions of the cylinder liner and piston ring, friction and wear tests of the lubricating oil blends containing the modified nanomaterials were carried out at different temperatures. The results showed that both nanomaterials were successfully modified with oleic acid and stearic acid. The dispersion stability of the modified nanomaterials in lubricating oil was improved. The dispersion stability of the lubricating oil blends with graphene before and after modification was slightly higher than that of lubricating oil blends with CeO2 before and after modification. At high temperature, the anti-friction properties of the two nano lubricating oil blends were similar. At ambient temperature, lubricating oil blends containing modified CeO2 did not play a role in reducing friction, while lubricating oil blends with modified graphene had the effect of reducing friction. Whether at ambient temperature or high temperature, the anti-wear property when lubricated with lubricating oil blends with modified CeO2 within the right concentration range was better than that when lubricated with lubricating oil blends containing modified graphene.

Funder

Practice Innovation Program of Jiangsu Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,General Materials Science,Biomedical Engineering,Atomic and Molecular Physics, and Optics,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3