Tellurene: An elemental 2D monolayer material beyond its bulk phases without van der Waals layered structures

Author:

Cai Xiaolin,Han Xiaoyu,Zhao Chunxiang,Niu Chunyao,Jia Yu

Abstract

Abstract Due to the quantum confinement effect, atomically thin two-dimensional (2D) monolayer materials possess distinct characteristics from their corresponding bulk materials, which have received wide attention from science and industry. Among all the 2D materials, elemental 2D materials with the simplest components are most striking. As an emerging group-VIA elemental 2D monolayer material, tellurene exhibits many exciting fundamental properties, such as chemical and mechanical stabilities, bandgap and high carrier mobilities compared to phosphorene, graphene and MoS2, respectively. Besides, in further exploration, it was found that tellurene or tellurene-based device presents excellent thermoelectric properties, piezoelectric properties, quantum Hall effects, and superb optical properties especially nonlinear optics characteristics, etc. The properties of tellurene can be modulated by virtue of strain, defects, edges, and heterojunction effects. In view of so many unique properties, it has drawn significant interest since tellurene was predicted and fabricated successfully in 2017. In this paper, we review the 2D tellurene allotropes, experimental preparation, excellent properties, performance modulation and future development.

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3