Abstract
Abstract
A stack of five Al(Ga)N-based quantum wells is investigated by combined laterally and depth resolved cathodoluminescence (CL) spectroscopy in order to distinguish lateral and vertical inhomogeneities of these wells. Transmission electron microscopy (TEM) micrographs provide data for the real sample structure, which enters into the Monte-Carlo simulation of the depth-resolved CL measurements to refine the depth resolution. The comparison of these CL measurements to the results of electron energy loss spectra (EELS) allows to identify local thickness variations of the lower three quantum wells to be the origin of two different luminescence contributions to the overall spectrum. The differentiation of the two groups of quantum wells by depth-resolved CL is demonstrated.
Funder
Untersuchungen zur Epitaxievon AlBGaN-Heterostrukturen für Anwendungen in UV-LEDs
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献