Biocompatible chitosan-modified core-shell Fe3O4 nanocomposites for exigent removal of blood lactic acid

Author:

Yang Lingyi,Wang Wenhong,Hu Yufeng,Guo Jing,Huang XiaoORCID

Abstract

Abstract Excess lactic acid in blood will lead to hyperlactatemia, which is frequently detected in critically ill patients admitted to the intensive care. Reducing the blood lactic acid content using acute treatments becomes particularly important for bringing a patient out of danger. Traditional treatments often fail in case of malfunctioning of a patients’ metabolism. Herein, nanotechnology was introduced to remove blood lactic acid independent of metabolism. In this work, chitosan was employed as the shell to adsorb lactic acid, and Fe3O4 nanoparticles were employed as the core to enable proper magnetic separation property. Our data showed that core–shell nanocomposites (NCs) had an exigent and efficient adsorption behavior. Furthermore, they could be easily separated from blood plasma by magnetic separation. Thus, the good hemocompatibility and cytocompatibility indicated that of core–shell NCs hold great potential in lactic acid removal for emergent hyperlactatemia treatment.

Funder

Science and Technology Fund of Guizhou Province

Science and Technology Planning Project of Tongren

Tongren Science and Technology Bureau

High-level Innovative Talents in Guizhou Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3